
Integrated Design and Process Technology, IDPT 2003
Printed in the United States of America, December, 2003

©2003 Society for Design and Process Science

 1

FORMAL METHODS FOR QUALITY OF SERVICE ANALYSIS
IN COMPONENT-BASED DISTRIBUTED COMPUTING

Chunmin Yang, Barrett R. Bryant, Carol C. Burt

Department of Computer and Information Sciences
The University of Alabama at Birmingham

Birmingham, AL 35294, U.S.A.
{yangc, bryant, cburt}@cis.uab.edu

Rajeev R. Raje, Andrew M. Olson

Department of Computer and Information Science
Indiana University Purdue University Indianapolis

Indianapolis, IN 46202, U.S.A.
{rraje, aolson}@cs.iupui.edu

Mikhail Auguston

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943, U.S.A.
auguston@cs.nps.navy.mil

ABSTRACT

 Component-Based Software Architecture is a
promising solution for distributed computing. To develop
high quality software, analysis of non-functional aspects
of the software properties (also called Quality of Service
or QoS) is very important. The UniFrame research
project proposes a Unified Component Meta-Model
Framework (UniFrame) that includes QoS contracts. A
classification of QoS parameters, both static and
dynamic, relevant to component-based distributed
computing is proposed and represented formally using
Two-Level Grammar (TLG), an object-oriented formal
specification language. TLG may be transformed into
both a UML model, augmented with OCL constraints,
and executable code in the Java programming language.
This may be regarded as standardized code for
implementation of the distributed application with
dynamic measurement of the QoS aspects incorporated.
The approach is consistent with OMG’s Model Driven
Architecture (MDA) in that QoS properties may be
specified at the Platform Independent Model (PIM) level
and then carried down to the Platform Specific Model
(PSM) level in implementation.

KEYWORDS
 Formal Specification, Quality of Service (QoS),
Component-Based Software Architecture, UniFrame,
Two-Level Grammar (TLG), Object Constraint
Language (OCL), Model Driven Architecture (MDA)

I. INTRODUCTION

 Component-Based Software Architecture (CBSA), a
viable and economical alternative to traditional software
design is also a promising solution for distributed
computing. Components, by definition, are independent
of the language implementation, tools and the execution
environment. In practice, the systems to be modeled and
implemented, and the environment change frequently.
UniFrame1 is a unified framework (Raje et al., 2001) that
allows a seamless integration of heterogeneous and
distributed software components. Each component
created using the UniFrame approach has a Unified
Meta-component Model (UMM) specification (Raje,
2000). The core parts of the UMM are: components,
service and service guarantees, and infrastructure. A
description of non-functional properties, also called
Quality of Service (QoS)2, is an important aspect of a
UMM specification.
 In this paper, CBSA and formal specifications are
used to specify non-functional properties, and to convert
the natural language requirements of the non-functional
properties into application programs. In this way, the
non-functional aspects of the software systems are
considered and integrated into the system, just like the
functional aspects. Since the system is modeled formally,
it is easier to monitor and maintain. Since the system will

1 http://www.cs.iupui.edu/uniFrame
2 The terms “Non-Functional Properties” and “Quality of
Service (QoS)” are used interchangeably in this paper.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
Formal Methods for Quality of Service Analysis in Component-Based
Distributed Computing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Alabama at Birmingham,Department of Computer and
Information Sciences,Birmingham,AL,35294

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of the 7th World Conference on Integrated Design and Process technology (IDPT 2003), pp:
291-299, Austin, TX, 2003

14. ABSTRACT
Component-Based Software Architecture is a promising solution for distributed computing. To develop
high quality software, analysis of non-functional aspects of the software properties (also called Quality of
Service or QoS) is very important. The UniFrame research project proposes a Unified Component
Meta-Model Framework (UniFrame) that includes QoS contracts. A classification of QoS parameters, both
static and dynamic, relevant to component-based distributed computing is proposed and represented
formally using Two-Level Grammar (TLG), an object-oriented formal specification language. TLG may be
transformed into both a UML model, augmented with OCL constraints, and executable code in the Java
programming language. This may be regarded as standardized code for implementation of the distributed
application with dynamic measurement of the QoS aspects incorporated. The approach is consistent with
OMG?s Model Driven Architecture (MDA) in that QoS properties may be specified at the Platform
Independent Model (PIM) level and then carried down to the Platform Specific Model (PSM) level in
implementation.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

be developed using Model Driven Architecture (MDA)3
and the Unified Modeling Language (UML)4, the Object
Constraint Language (OCL)5 is integrated into UniFrame
to specify the QoS requirements of the distributed
computing applications. As an extension of UML, the
OCL is powerful and efficient in specifying the
constraints on the components that cannot be easily
specified by UML diagrams. The OCL is a formal
language, and is compatible with the CBSA. Thus, with
the OCL specification, the QoS requirements can be
specified in a formal way and automatically weaved into
the generated code.
 The rest of the paper is organized as follows. The
next section describes the motivation for our research
related to the Quality of Service analysis. The formal
language, we use, is briefly introduced in section III.
Section IV describes the technical basis for our
specification and representation of QoS approach. The
overall structure of the specification and automatic
conversion is described with a simple example in section
V. This example focuses on the integration of the OCL
and Model Driven Architecture in the QoS analysis and
associated automation. This paper ends with conclusions
and future work.

II. QUALITY OF SERVICE

 In Distributed Component Systems (DCS), the
Quality of Service (QoS) aspects are as important as the
functional aspects. The Quality of Service is a concept
which originated in the networking area and has been
extended to software development. However, QoS
aspects are complex, abstract, not quantifiable, and
difficult to specify and model (Yang et al., 2002). The
effect of QoS properties on the system does not
necessarily remain the same all the time (Rosa et al.,
2002). It is especially difficult to model and formulate
these properties during the early stages of the software
development. In addition, QoS specifications are rarely
supported by computer languages, methodologies, or
tools (Pal et al., 2000). Hence, it is not easy to decide if
the system meets the QoS requirements until the latter
half of the software development phase. It is even harder
to validate the non-functional properties of software, as
there are no well accepted models for the quantification
of QoS parameters. Because of all these reasons, it is
more difficult to specify the QoS parameters than to
specify the functional aspects of the software
requirements.
 However, to develop high quality software, QoS
properties have to be taken into consideration. There
have been several research projects with this goal, e.g.

3 http://www.omg.org/mda/
4 http://www.omg.org/uml/
5 http://www-3.ibm.com/software/ad/library/standards/ocl.html

Aster6, Qedo7, QuO8, to name a few, but not many
attempts have been made to incorporate QoS into
component-based software systems, (an exception being
Campbell and Cheng, 2001).

Our goal is to describe the QoS parameters with a
formal language to standardize the software development
of systems in which QoS is integrated. Natural Language
is too informal and ambiguous for the purpose of
describing QoS requirements, but on the other hand,
programming languages are not appropriate either
because of too much detail, and some inherent
“problems” of high level programming languages, such
as platform dependence. Formal specifications can
overcome both of these problems and can also be
elegantly integrated into component-based software
development techniques. Since it is a formal specification
language at a level of abstraction between natural and
programming languages, we use Two-Level Grammar
(TLG) (Bryant and Lee, 2002) to specify QoS
parameters, and convert them into a UML specification
with integrated OCL constraints and conforming to
MDA.

In order to specify and analyze the QoS properties,
they are divided into three aspects: non-functional
attributes, non-functional actions and non-functional
properties (Yang et al., 2002). Non-functional attributes
are the features to be specified, a significant
characteristic of which is its decomposability in the sense
that a non-functional attribute can be decomposed into
more detailed attributes. Non-functional actions are the
input that has effect on the non-functional attributes.
Non-functional properties are the constraints of the non-
functional actions over the non-functional attributes. A
simple example of these aspects is: the response time of a
distributed system is a non-functional attribute, and the
clients connecting into the system or disconnecting from
the system are non-functional actions. Non-functional
properties define how the connecting or disconnecting
operation may affect the non-functional attributes and
what kind of response time is expected in this system.
 Four steps are taken to assure the QoS of a
Distributed Computing System (DCS): first, create a
catalog for the QoS parameters; then provide a formal
specification of them; third, construct a mechanism to
guarantee the specified values for these parameters, both
at the individual and component level and at the entire
system level, both statically and dynamically. Last,
testing is performed to make sure the constructed system
meets the original requirement specification, especially
with respect to QoS.

A catalog of Quality of Service parameters is
described in (Raje et al., 2002). It includes many
parameters such as, security, throughput, capacity, etc.

6 http://www-rocq.inria.fr/slidor/work/aster.html
7 http://qedo.berlios.de
8 http://www.dist-systems.bbn.com/tech/QuO

 3

The format of this catalog is based on the format of the
design patterns catalog (Gamma et al., 1995), for both
static and dynamic properties.

A number of architectures have been proposed for
QoS guarantees for distributed systems, for example, the
Quality Objects (QuO) framework. This work mainly
emphasizes specification, measurement, control and
adaptation to changes in Quality of Service. Another
example, QoS Modeling Language (QML) is a QoS
specification language proposed in (Frolund and
Koistinen, 1998).
 In UniFrame, we formally specify the quality of
components and component complexes (results of
compositions of components). The aspects of a meta-
model are specified and verified in the context of
combining heterogeneous components. This provides a
QoS management approach to the interactions between
clients and servers for distributed object systems by
supporting frameworks for multiple QoS categories. The
following features of the UniFrame approach, for QoS,
distinguish it from other related efforts:
1. Creation of a QoS Catalog for software components

containing detailed descriptions about QoS attributes
of software components including the metrics,
evaluation methodologies and the interrelationships
with other attributes.

2. Integration of QoS at the individual component and
distributed system levels.

3. Formal specifications based on Two-Level
Grammar.

4. The validation and assurance of QoS, based on the
concept of event grammars (Auguston, 2000).

5. An investigation of the effects of component
composition on QoS; involving the estimation of the
QoS of an ensemble of software components given
the QoS of individual components.

6. The automatic translation from natural language to
formal specification languages, and then to UML
class diagrams and application programs.

7. An integration of OCL to specify the QoS properties
and to convert to high level programming languages.

8. The conformance to the OMG MDA standard by
specifying QoS in Platform Independent Models and
implementing it in Platform Specific Models.

III. TWO-LEVEL GRAMMAR

 In UniFrame, Two-Level Grammar (TLG) is used to
specify the QoS parameters. TLG is a formal
specification language, originally developed as a
specification language for programming language syntax
and semantics, and later used as an executable
specification language and as the basis for conversion
from requirements expressed in natural language into
formal specifications. It is a formal notation based upon
natural language and the functional, logic and object-
oriented programming paradigms. The combination of

natural language and formalization is unique to TLG and
also fits the Unified Meta-component Model (UMM)
(Raje, 2000) for component description used in
UniFrame well. The specification in TLG is easy to read
and may be automatically generated from natural
language requirements specifications (Lee and Bryant,
2002a).
 TLG is suitable for representing QoS properties
because with its class hierarchy that corresponds to the
way we describe QoS properties (Yang, et al., 2002), we
can take advantage of CBSA and component reuse.
Especially since it supports multiple inheritance, it may
be used to represent the decomposability of the QoS
properties. The instance variables and functions can be
used to represent the QoS attributes and actions. TLG has
a high level of abstraction and its representation is
flexible – not all the members have to be quantifiable,
and this suits the feature of QoS properties since most of
the effects of the QoS are either existent or not existent,
instead of being a quantifiable concept.

IV. OCL, MDA AND QUALITY OF SERVICE

The specification of the OCL is a part of the UML
specification, and it is not intended to replace existing
formal languages, but to supplement the need to describe
the additional constraints about the objects that cannot be
easily represented in graphical diagrams, like the
interactions between the components and the constraints
between the components’ communication. In object-
oriented modeling, a graphical model, such as a class
diagram, is not enough for a precise unambiguous
specification. OCL is designed to solve this problem. It
facilitates the specification of model properties in a
formal yet comprehensive way. By combining the power
of the straightforward, graphical UML modeling and the
textual, accurate OCL constraints, these kinds of
information can be specified in this formal way.

OCL has the characteristics of an expression
language, a modeling language and a formal language.
An OCL expression is guaranteed to be without side
effects since it is an expression language, and thus cannot
change anything in the model, although an OCL
expression can be used to specify the state changes of the
system. OCL is not a programming language, but a
modeling language. So it is impossible to write program
logic or flow-control in OCL (Neema et al., 2002). All
implementation issues are likewise out of the scope of
OCL. OCL is also a formal language where all constructs
have a formally defined meaning; in other words, it is
unambiguous. Furthermore, OCL is strongly typed.

The main idea behind OCL is “Design By Contract”
(DBC) (Frankel, 2003). By applying this, the
responsibility of the parties is made unambiguous and
can be formally described. An OCL constraint consists of
the precondition, the postcondition and the invariant. The
contract is a way of establishing who does what by
stating, first, what must be true for the caller (say, client,

 4

for example) to request a service from the callee (server,
for example) (precondition), and, what must be true when
the callee finishes providing the service (postcondition).
The invariant must be true when a routine is called and
when it terminates, but not necessarily when it is
executing. By the principle of “Design By Contract”,
and specifying these three constraints, the services
provided by the server are exposed, but not the details of
the implementation of the services.

On the other hand, the callee will know when exactly
a service can be provided (available), and the caller will
know when exactly it can request the service. In case of
exceptions, it is easy to find out who caused the
exception: if the precondition is false, the caller broke the
contract; if the postcondition is false, the callee broke the
contract; if the invariant is false, the callee class broke
the contract.

Since OCL is a textual extension of the graphical
UML modeling language, an OCL specification is always
unambiguous and precise, also, it provides better
documentation to the visual models. It can be used during
the modeling and specification. Since OCL is an
expression language, it can be checked without an
executable system. All these features turn out to be useful
in representing QoS properties, which can be represented
by the combination of precondition, postcondition and
invariant in OCL. The QoS attributes are represented by
the member variables of the class, and the QoS actions
are represented by the methods. They are checked at run
time, before and after the calls so that the change of the
QoS parameters of the system is monitored in a timely
basis.

 The precondition has to be satisfied before the
method can be called, and the postcondition has to be
satisfied at the time the method returns. It is easy to find
out which step causes exceptions if any. The methods are
called in a loop-like fashion, so, whenever a change of
the QoS parameter is observed (by some method), the
corresponding methods are called and the changes are
made accordingly and the necessary notification is done
at the same time. The QoS specification is integrated in
the overall system design in this fashion. In this way, the
satisfaction of the QoS requirements is guaranteed and
the change of the QoS properties is under observation
and control, as well.

Although QoS properties and associated metrics have
been widely used in networking, there is no standard
vocabulary for discussing the QoS as it relates to the
distributed computing and component-based solutions
(Burt et al., 2002), especially when the QoS properties
are applied on variant platforms and when the different
aspects of the QoS interact with each other. A standard
vocabulary is the first step toward progressing Model
Driven Architecture that includes QoS parameterization
and/or QoS contracts. This is one of the goals of the
UniFrame project.

MDA provides an open, vendor-neutral environment
for the integration of different distributed application

software. MDA aims to separate the business or
application logic from the underlying platform
technology. Its standards are made up of the Unified
Modeling Language (UML), Meta-Object Facility
(MOF), XML Meta-Data Interchange (XMI), and
Common Warehouse Meta-model (CWM) (Frankel,
2003). Platform-independent applications built using
MDA and the associated standards can be realized on a
range of platforms.

MDA has standards that enable the use of generative
techniques for the construction of interoperability bridges
between different platform technologies. In a distributed
environment, it is normal to see different components of
the system running on dispersed and different platforms,
and using various techniques. By applying the MDA
architecture, the detailed difference is hidden from the
application layer. This is especially useful for the
modeling, analysis and control of QoS of the systems.

The MDA design initiative assists during the
interaction between the different platforms and different
middleware. Middleware environments started out
providing the interoperability using the architectures that
are standard, proprietary, or somewhere in the middle.
Progressively, more and more services and more
powerful middleware have been added to the overall
architecture, thus, it is more difficult to ensure the
interoperability of these middleware. To efficiently solve
this problem, MDA is designed by applying the
component and modeling technology and putting the
whole picture together.

There are several core models in MDA: one
represents the enterprise computing with its component
structure and transactional interaction; another represents
the real-time computing (which is an important part of
QoS) with its special needs for resource control, and
some others to represent specialized environments. Each
of these models will be independent of any middleware
platform.

MDA defines two models: Platform Independent
Model (PIM) and Platform Specific Model (PSM) and
the conversion between the PIM and the PSM. A PIM
describes the business processes and entities in terms of
components, and does not specify the implementation of
the software system as such. A PSM, however, describes
how to build the components given a specific technology
by applying mapping profiles, that targets different
software technology technologies. It works together with
the domain business information model and some other
details. Hence, the PIM and the PSM separate the design
model from the implementation model by providing
multiple layers, and each of which focusing on different
level of abstraction and platform and domain
information.

The first step when constructing an MDA-based
application will be to create a platform independent
application model expressed via UML in terms of the
appropriate core model. Adding new middleware
platforms to the interoperability environment is

 5

straightforward: after identifying the way a new platform
represents and implements common middleware
concepts and functions, this information is incorporated
into the MDA as a mapping.

V. OCL/MDA INTEGRATION FOR QOS
ANALYSIS

 UML has been popularly used in object-oriented
design and is useful for modeling systems, their behavior
and interaction. However, UML currently does not
support the modeling of QoS properties of objects or
components and there is no special attention to model
quality requirements or to express in UML QoS aspects
of software architectures (UML, 2002).

We present a formal semantics for the object
constraint language that is part of the UML. In the
context of information systems modeling, UML class
diagrams can be utilized for describing the overall
structure, whereas additional integrity constraints and
queries are specified with OCL expressions.

The Generic Modeling Environment (GME) (GME,
2001) is a configurable, domain-specific, model-
integrated tool for creating and evolving domain specific,
multi-aspect model of systems developed by the Institute
for Software Integrated Systems (ISIS) at Vanderbilt
University9. OCL is embedded in GME to specify the
constraints of the interactions between different
components of the system to be modeled (Gray, 2001).

GME uses the technique of Model Integrated
Computing (MIC) (Nordstrom, et al., 1999). MIC is a
methodology for generating application programs
automatically from multi-aspect models. GME
automatically generates the meta level specification, and
does not depend on the specific domain the application is
in.

Since GME supports the specification of OCL
constraints, we can use this tool to specify our QoS
specification in OCL and integrate with the other aspects
of the software requirements, and generate the
application level programs, as either UML models, or
object oriented programming language programs.

With the idea of Platform Independent Modeling
(PIM) in MDA, if we specify the QoS of a system in a
way that conforms to the MDA standard, this
specification will be able to be applied to any platform
without worrying about the difference of details in the
domain or platform, environment this specification is
applied.

We would like to use a simple ATM example to
demonstrate the process of converting the QoS
specification from natural language into a modeling
language (Lee and Bryant, 2002a). A brief description of
the QoS requirements of the ATM (Yang et al., 2002) is
reprinted here:

9 http://www.isis.vanderbilt.edu

 ATM’s security property is as follows. The length of the
encryption byte should be bigger than 3 and the allowed
attempts have to be smaller than the maximum allowed
attempts. If the encryption byte length is 6 and the maximum
allowed attempts is less than 5 then the system is 80% secure.
If the account type is a savings account or the maximum
allowed connections of the bank is less than 50 or the delay
level is less than 50 then the maximum allowed attempts is
limited to 4.
 If the user timeout is between 10000 and 120000
milliseconds we have a good delay level. If the response time is
longer than 30000 milliseconds, the delay level drops down to
40%.

The conversion process from a natural language

requirements document into executable code is shown in
Figure 1. First, we start with a natural language
description of the QoS parameter. We are mainly
concerned with “security” issues in this example. Since
TLG is a natural language-like formal specification
language, it is easy to read and it is easier to convert the
natural language specification to TLG than to convert to
other formal specification languages. To convert from
natural language description to TLG specification, the
QoS property description is first represented in XML to
specify which role each sentence plays.

A sample XML representation of the ATM example
is shown as follows.

<document>
 <c title=”ATM”>
 <c title=”Security”>
 <p meta=”satisfaction check”>
 <s>The length of the encryption byte should
 be bigger than 3 and the allowed
 attempts has to be smaller than the
 maximum allowed attempts
 </s>
 </p>

 <p meta=”level update”>
 <s>If the encryption byte length is 6 and the
 allowed attempts is less than 5 then the
 system is 80% secure
 </s>
 </p>
 <p meta=”attribute update”>
 <s>If the account type is a savings account
 or the maximum allowed connections of
 the bank is less than 50 or the delay
 level is less than 50 then the maximum
 allowed attempts is limited to 4
 </s>
 </p>
 </c>

 6

 <c title=”Delay”>
 <p meta=”satisfaction check”>
 <s>If the timeout is between 10000 and
 120000 milliseconds we have a good
 delay level
 </s>
 </p>
 <p meta=”level update”>
 <s>If the response time is longer than
 30000 milliseconds the delay level drops
 down to 40%
 </s>
 </p>
 </c>
 </c>
</document>

Given this XML representation of QoS, each

sentence of the specification is tokenized and then by
using computational linguistics parsing techniques the
system constructs its parsing tree (Lee and Bryant,
2002b).

Based on the above parsing tree and the meta
information from the XML tags, a Knowledge Base is
constructed. The Knowledge Base is an explicit and
declarative representation that is used to represent,
maintain, and manipulate knowledge about QoS of the
system.

This Knowledge Base is converted into TLG by
identifying the classes, data types, and operations as
shown below:

class Property.
 Level :: Integer.
end class.

class Bank_Capacity extends Property.
 Maximum_Connections :: Integer.
end class.

class ATM_Security extends Property.

 Maximum_Allowed_Attempts :: Integer.
 Encryption_Byte_Length :: Integer.
 Allowed_Attempts :: Integer.
 Account_Type :: String.

 check satisfaction:
 Encryption_Byte_Length > 3,
 Allowed_Attempts < Maximum_Allowed_Attempts.

 update level:
 Encryption_Byte_Length = 6;
 Allowed_Attempts < 5,
 Level := 80.

 update attributes:
 Account_Type = “savings”,
 Maximum_Allowed_Attempts := 4;
 Bank_Capacity.Maximum_Connections < 50,
 Maximum_Allowed_Attempts := 4;
 ATM_Delay.Level < 50,
 Maximum_Allowed_Attempts := 4.

end class.

class ATM_Delay extends Property.

 Response_Time :: Integer.
 User_Timeout :: Integer.

 check satisfaction:
 User_Timeout > 10000, User_Timeout < 120000.

 update level:
 Response_Time > 30000, Level := 40.

end class.

Because OCL is also a formal language, it can be

used to represent the constraints of the QoS properties.
Our next step is to convert the TLG specification of QoS
into OCL specification. A partial OCL code is listed
here:

ATM_Security
 level: Integer
 encryption_byte_length: Integer
 allowed_attempts: Integer
 max_allowed_attempts: Integer
 account_type: String

 checkSatisfaction ()
 updateLevel ()
 updateAttributes ()

ATM_Security::checkSatisfaction ()

Pre: encryption_byte_length > 3 and
 allowed_attempts < max_allowed_attempts

Post:encryption_byte_length>=
 encryption_byte_length@pre and
 allowed_attempts <= allowed_attempts@pre

ATM_Security::updateLevel ()

Pre: encryption_byte_length == 6 and
 allowed_attempts < 5
Post: level = 80

ATM_Security::updateAttributes ()
Pre: account_type == “savings”
Post: max_allowed_attempts = 4

 7

As indicated earlier, OCL is an expression language,

so OCL constraints cannot directly affect any models
created using the target modeling language. The
constraint expressions are merely formal comments on
the semantics of the modeling language. Models created
using the target modeling language can be verified using
the OCL expressions, but the expressions cannot cause
any changes in the models. This exactly suits our need to
specify the QoS properties since it is commonly known
that some of the QoS properties may change dynamically
during the execution of the program, or because of some
outside influence. OCL is perfect for representing these
properties at the same time, as it does not change the
properties.

OCL is a formal language, since every component of
it has its exact meaning and it is unambiguous. Another
advantage of OCL is that it is a widely accepted standard
language, and has a friendly interface with other formal
languages and modeling languages.

The syntax and semantics of TLG and OCL are
similar to some extent which simplifies the conversion.
The conversion from the TLG specification to the OCL
constraints can be achieved by the mapping of the
member variables of the TLG and of the OCL. Both TLG
and OCL are strongly typed. The method conversion
between these two specifications is achieved by the
context analysis.

Using GME, we can parse the OCL constraints and
generate the UML model or object oriented programming
language program code, e.g., Java. Especially, one of the
nice features of GME is the conversion between meta
level and domain level as shown in Figure 1.

After we convert from TLG specification of QoS into
OCL, by the OCL parser, the application domain
programs or models can be generated, regardless of the
specific domain of this application. So the QoS
properties are extracted from the domains and can all be
specified in a uniform way.

The UML class diagram of the QoS specification of
the ATM example is shown in Figure 2.

In this approach, the domain dependence can be
masked by the GME tool, the platform dependent
problem can be solved by integrating the MDA
architecture. Since this approach will conform to the
MDA standard, the specification of the QoS in this way
is platform independent in the sense that the specification
of the QoS parameters does not have any platform
dependent information or constraints, thus is applicable
in any environment. In the distributed environment, when
only the interfaces of the components are exposed, this
QoS specification can be integrated into the overall
system design.

As far as platform independence is concerned, we are
taking the approach of MDA converting from PIM to
PSM.

The catalog of QoS parameters we create applies to
all platforms, regardless of the programming language

used to achieve it. In the design phase, the software
system is designed in a platform independent manner in
which the QoS properties are integrated as components.
It is implemented by applying the state-of-the-art
software technology, resulting in a platform dependent
system instance. In this way, the detail does not need to
be considered, and there is no reason to let too much
detail affect the design of the software. As long as we can
specify the QoS properties in design level, they are
enforced at the implementation level, and they apply to
varieties platforms, which is very common in Distributed
Computing.

VI. CONCLUSION AND FUTURE WORK

 Quality of Service properties of the software
requirements specification are an important part of
software design consideration. In our research, the QoS
requirements are described in natural language and later
converted to UML or high level programming languages.
By this way, people working in different domains can
specify their QoS requirements that will later be
converted into the formal modeling language. With the
integration of OCL and MDA, more detailed
requirements can be accurately expressed in the
modeling stage of the software design, and the details of
different platforms and operating systems are hidden
from the software designers and developers, which is
especially beneficial in the distributed applications.
 Our future work is to automate the conversion of
OCL, and implement the representation within MDA,
and hopefully automate the standard documentation
generation. At the same time, we plan to improve the
compatibility of the conversion. The improvement of the
usability of the system is another goal.

Acknowledgement. This material is based upon work
supported by, or in part by, the U. S. Army Research
Laboratory and the U. S. Army Research Office under
contract/grant number DAAD19-00-1-0350 and by the
U. S. Office of Naval Research under award number
N00014-01-1-0746.

References:

 Auguston, M., 2000, “Tools for Program Dynamic
Analysis, Testing, and Debugging Based on Event
Grammars”. Proceedings of the 12th International
Conference on Software Engineering and Knowledge
Engineering, pp. 159-166.
 Bryant, B. R., and Lee, B.-S., 2002, “Two-Level
Grammar as an Object-Oriented Requirements
Specification Language”. Proceedings of the 35th Hawaii
International Conference on System Sciences,
http://www.hicss.hawaii.edu/HICSS_35/

 8

HICSSpapers/PDFdocuments/STDSL01.pdf.
 Burt, C. C., Bryant, B. R., Raje, R. R., Olson, A., and
Auguston, M., 2002, “Quality of Service Issues Related
to Transforming Platform Independent Models to
Platform Specific Models”. Proceedings of EDOC 2002,
the 6th IEEE International Enterprise Distributed Object
Computing Conference, pp. 212-223.

Campbell, L. A. and Cheng, B. H. C., 2001,
“Integrating Informal and Formal Approaches to
Requirements Modeling and Analysis”. Proceedings of
IEEE International Symposium on Requirements
Engineering (RE01), pp. 294-295.

Frankel, D. S., 2003, Model Driven Architecture:
Applying MDA to Enterprise Computing, OMG Press.

Frolund, S., Koistinen, J., 1998, “Quality of Service
specification in distributed object system”, Distributed
System Engineering Journal, Vol. 5, No. 4, pp. 159-198.

Gamma, E., Helm, R., Johnson, R., Vlissides, J.,
1995, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

GME, 2001, “Generic Modeling Environment: GME
2000 User’s Manual”, Version 2.0, Release 12-18-2001,
Institute for Software Integrated Systems, Vanderbilt
University.

Gray, J., Bapty, T., Neema, S., Tuck, J., 2001,
“Handling Crosscutting Constraints in Domain-Specific
Modeling”, Communications of the ACM, Vol. 44, No.
10, pp. 87-93.

Lee, B.-S. and Bryant, B. R., 2002a, “Automated
Conversion from Requirements Documentation to an
Object-Oriented Formal Specification Language,”
Proceedings of SAC 2002, the 2002 ACM Symposium on
Applied Computing, pp. 932-936.

Lee, B.-S. and Bryant, B. R., 2002b, “Contextual
Processing and DAML for Understanding Software
Requirements Specifications,” Proceedings of COLING
2002, the 19th International Conference on
Computational Linguistics, pp. 516-522.

Neema, S., Bapty, T., Gray, J., Gokhale, A., 2002,
“Generators for Synthesis of QoS Adaptation in
Distributed Real-Time Embedded Systems”. Proceedings
of the ACM SIGPLAN/SIGSOFT Conference on
Generators and Components (GCSE/SAIG), pp. 236-251.

Nordstrom, G., Sztipanovits, J., Karsai, G., Ledeczi,
A., 1999, “Metamodeling – Rapid Design and Evolution
of Domain-Specific Modeling Environments”.

Proceedings of IEEE Conference and Workshop on
Engineering of Computer-Based Systems, pp. 75-83.
 Pal, P., et al., 2000, “Using QDL to Specify QoS
Aware Distributed (QuO) Application Configuration”.
Proceedings of 3rd IEEE International Symposium on
Object-Oriented Real-time Distributed Computing, pp.
310-319.
 Raje, R., 2000, “UMM: Unified Meta-Object Model
for Open Distributed Systems,” Proceedings of ICA3PP
2000, 4th IEEE International Conference on Algorithms
and Architecture for Parallel Processing, pp. 454-465.

Raje. R. R., Auguston, M. , Bryant, B. R., Olson, A.
M., and Burt, C. C., 2001, “A Unified Approach for the
Integration of Distributed Heterogeneous Software
Components”. Proceedings of 2001 Monterey Workshop
on Engineering Automation for Software Intensive
System Integration, pp. 109-119.
 Raje, R. R., Auguston, M., Bryant, B. R., Olson, A.
M., and Burt, C. C., 2002, “A Quality of Service-based
Framework for Creating Distributed Heterogeneous
Software Components”. Concurrency and Computation:
Practice and Experience, Vol. 14, No. 2, pp. 1009-1034.
 Rosa, N. S., Cunha, P., and Juso, G., 2002,
“ProcessNFL: A Language for Describing Non-
Functional Properties”. Proceedings of 35th Hawaii
International Conference on System Sciences,
http://www.hicss.hawaii.edu/HICSS_35/
HICSSpapers/PDFdocuments/STDSL06.pdf.
 UML, 2002, “UML™ Profile for Modeling Quality
of Service and Fault Tolerance Characteristics and
Mechanisms, Initial Submission”,
http://cgi.omg.org/cgi-bin/doc?ad/02-
01-02.
 Yang, C., Lee, B-S, Bryant, B. R., Burt, C. C., Raje,
R. R., Olson, A. M., and Auguston, M., 2002, “Formal
Specification of Non-Functional Aspects in Two-Level
Grammar”. Proceedings of the UML 2002 Workshop on
Component-Based Software Engineering and Modeling
Non-Functional Aspects (SIVOES-MONA), http://www-
verimag.imag.fr/SIVOES-MONA/uniframe.pdf.

Natural Language Processing

Knowledge Base

QoS Requirements Document in XML

QoS Requirements Document in NL

 9

Figure 1. System Structure

Figure 2: UML for QoS of ATM

Decontextualization

Two Level Grammar

Data and Function Mappings, OCL Parser

Object Constraint Language Constraints

Application Program

GME

Platform
Independent

